Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.

نویسندگان

  • Daniel R Garalde
  • Christopher A Simon
  • Joseph M Dahl
  • Hongyun Wang
  • Mark Akeson
  • Kate R Lieberman
چکیده

During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prechemistry Nucleotide Selection Checkpoints in the Reaction Pathway of DNA Polymerase I and Roles of Glu710 and Tyr766

The accuracy of high-fidelity DNA polymerases such as DNA polymerase I (Klenow fragment) is governed by conformational changes early in the reaction pathway that serve as fidelity checkpoints, identifying inappropriate template-nucleotide pairings. The fingers-closing transition (detected by a fluorescence resonance energy transfer-based assay) is the unique outcome of binding a correct incomin...

متن کامل

Exploration of factors driving incorporation of unnatural dNTPS into DNA by Klenow fragment (DNA polymerase I) and DNA polymerase α

In order to further understand how DNA polymerases discriminate against incorrect dNTPs, we synthesized two sets of dNTP analogues and tested them as substrates for DNA polymerase alpha (pol alpha) and Klenow fragment (exo-) of DNA polymerase I (Escherichia coli). One set of analogues was designed to test the importance of the electronic nature of the base. The bases consisted of a benzimidazol...

متن کامل

Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment).

To investigate the interactions that determine DNA polymerase accuracy, we have measured the fidelity of 26 mutants with amino acid substitutions in the polymerase domain of a 3'-5'-exonuclease-deficient Klenow fragment. Most of these mutant polymerases synthesized DNA with an apparent fidelity similar to that of the wild-type control, suggesting that fidelity at the polymerase active site depe...

متن کامل

Kinetic and structural investigations of the replicative fidelity of the Klenow fragment.

fk l icr ichi t i coli DNA polymerase I (Pol I ) is a 109 kDa protein required for repair and replication in ~ i v o (Kornberg, I 080). In addition to a 3'5'-polymerase activity requiring a template t o he copied and a primer strand to which nucleotides are added, the enzyme possesses 3' 5'-exonuclcasc activity capable o f removing nucleotides from the primer strand, and 5'3'-cxonuclcase activi...

متن کامل

Recognition of base-pairing by DNA polymerases during nucleotide incorporation: the properties of the mutagenic nucleotide dPTP alphaS.

The highly mutagenic nucleoside dP (6-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one) is a bicyclic analogue of N4-methoxy-2'-deoxycytidine. It exists as a mixture of its imino and amino tautomers in solution with a ratio of about 10:1 based on its tautomeric constant. The bicyclic nature of the heterocycle P restrains the amino substituent in an anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 16  شماره 

صفحات  -

تاریخ انتشار 2011